About DSFM

Learn from Professors at EPFL

Taught on campus at EPFL, the DSFM program balances theory and practice to quickly cover the most-important aspects of Data Science. You will learn in a highly-interactive environment, through a combination of lectures, demonstrations, case studies, problems, and visualizations.

DSFM helps executives, managers, analysts, and other professionals understand when AI works, and when it does not. We also take time for brainstorming and networking with peers to help you convert opportunities into real-world results.

With backgrounds ranging from computational science to innovation strategy, DSFM professors and instructors are at the forefront of Data Science research and applications. This combination of expertise assures that your workshop will address all aspects of Data Science, keeping you at the cutting edge of emerging technologies and data thinking.

Teaching assistants are available throughout the day to provide one-on-one assistance with practical problems. All participants will leave the course being able to build, evaluate, and work with real data and real models!


Prof. Kenneth Younge is an Associate Professor at EPFL, the Chair of the Technology and Innovation Strategy Lab, and Program Director for DSFM. He has started four companies and worked in the roles of Director of Development, Consultant, CTO, and President.

Professor Younge currently teaches the Masters course on Data Science for Business, the Doctoral course on Computational Methods for Management, the IML course on Data Science for Logistics, and an eMBA course on Technology and Innovation Strategy. His research focuses on computational economics and digital transformation. His doctoral students and post-doctoral researchers collaborate with a wide range of Swiss and US companies in ongoing research projects.

We organize interactive lunch sessions during the DSFM Boot Camp. Additional professors and industry experts join the class to meet with small groups of DSFM participants to discuss particular topics of interest. Each discussion leader is an expert in a given area. Examples of discussion leaders include:

Prof. David Atienza is an Associate Professor at EPFL and expert on embedded systems for the Internet of Things (IoT). He leads a discussion on how smart wearables, wireless sensors, edge computing, and embedded machine learning work together to create new business opportunities.

Prof. Chris Tucci is the former Dean of the College of Management at EPFL and an expert on issues of design thinking and digital transformation. He leads a discussion on how firms construct data-driven strategies to transition to new technologies, business models, and organizational forms.

Prof. Dimitrios Kyritsis is an Adjunct Professor at EPFL and Director of the Doctoral Program on Robotics, Control and Intelligent Systems. He is an expert on the management of data and information flows, and D-I-K (Data-Information-Knowledge) transformations throughout the lifecycle of products.

Prof. Negar Kiyavash is a Full Professor at EPFL and Chair of Business Analytics in the College of Management. She is an expert on causal inference from networked big data and teaches on advanced topics in machine learning, artificial intelligence, optimization, and data science.

Prof. Bob West is an Assistant Professor at EPFL and head of the Data Science Lab in the School of Computer and Communication Sciences. His research aims to make sense of Big Data collected from the Web, such as server logs, social media, wikis, online news, online games, etc.

Prof. Alex Biedermann is an Associate Professor at the UNIL Ecole des Science Criminelles and an expert on decision-making under uncertainty. He leads a discussion on how computational methods can support a more systematic approach for automating decisions.

Dr. Christopher Bruffaerts is a lecturer at the College of Management at EPFL and instructor for the Masters course on Data Science in Practice. He has worked on customer analytics, fraud detection, and big data technologies at BNP Paribas Fortis, Credit Suisse, and UPC.


The DSFM Boot Camp is held on campus at EPFL (the École Polytechnique Fédérale de Lausanne). EPFL is part of the Swiss Federal Institute of Technology and one of the leading technical centers in Europe.

EPFL is home to over 350 laboratories and research groups, each working at the forefront of science and technology – with a diverse, committed and stimulating research community that is active over a wide spectrum of quantitative and design-focused disciplines.

Visit Lausanne

DSFM is not just for those living and working in Switzerland.

Lausanne is a destination in of itself - and worthy of a visit while you are here. Come for a course and stay for the weekend. Get to know one of Europe’s most vibrant and cosmopolitan centers for science and technology.

EPFL and Lausanne are less than an hour by train from the Geneva International Airport, and a short flight from most any city in Europe.


Sign up for the DSFM newsletter to receive updates about the program.


What kind of programming skills do I need for the Boot Camp?

Please see the section on "Preparation" for each type of DSFM course: some courses are more technical and include programming, whereas other courses involve no programming.

Typically, when programming is involved, the objective is to learn "how to read code" so that you can ask good questions, get involved with your team, and understand the logical flow. Some Workshops, however, are focused much more on programming and active development. Please check each course for more information or contact us with specific questions/concerns.

All of the examples and demonstrations are in Python. We therefore recommend that you review the basics of Python before the technical courses. A good place to start is the 7-hour Python tutorial by Kaggle. Doing so will help you follow along with the demos, examples, and project solutions covered in class. Of the two recommendations (to know some linear algebra and to be prepared with some basic Python), being prepared with some basic Python is more important.

What kind of compter/Python setup do I need for DSFM?

To follow along with the programming demonstrations, exercises, and projects in the DSFM Boot Camp (but not the Fast Track), you will need to bring a laptop. It can be any kind of computer with a web browser. We will provide you with WIFI to access the Internet. You can then follow Option 1, 2, or 3 (below) to run and write Python code.

OPTION 1: Run Jupyter Lab on a VM provided by DSFM

At the start of the Boot Camp, we will provide you with a link to your own "virtual machine" (VM) to use throughout the DSFM Boot Camp week. Your VM will run on the Google Cloud and you can access it through a simple, standard web browser. Therefore, the capabilities of your own computer don't matter provided that you can browse to the open internet - so you can use this option even with a simple Chromebook.

We recommend this option - it is the easiest option and has proven to be most reliable.

An Important note about Corporate Laptops

If you bring a corporate laptop, please make sure that it does not run firewall software blocking TCP port 5000. Under Option 1, your web browser will need to use access TCP port 5000 to connect to your Virtual Machine. If your computer does run a firewall, please make sure that you have permission to reconfigure the firewall. To be on the safe side, we recommend that it is better to bring a personal computer where obtaining administrative privileges is not a problem. We will have a few laptops to loan out in a crunch, but we cannot guarantee that one will be free.

OPTION 2: Run Jupyter Lab on your own computer

If you would like to install Jupyter Lab and run all code "locally" on your own machine, then we recommended that you use a Mac OS X or Linux computer. Mac OS X is convenient because you can use standard UNIX commands from a terminal. It is possible to install everything you need on a Windows computer, but we don't support the Windows environment and instead ask that you use your Windows computer to follow OPTION 1 above.

This option is for the more advanced students who understand how to setup and configure their own computer. If you go with Option 2, we strongly recommend that you install the "Anaconda" distribution of Python that already includes everything you will need for the course. Anaconda is available from https://www.anaconda.com/download/ .

What does "basic knowledge of linear algebra" mean?

DSFM courses cover machine learning models at a high level. To understand how/why a model works requires a deeper understanding of the optimization process by which each method minimizes error. The optimization process often is expressed in terms of linear algebra. It therefore is helpful if you have been exposed to linear algebra - at least through a beginning undergraduate level.

However, if you have forgotten your maths, then that is OK. One does not need to solve or prove any mathematical problems in DSFM. All of the methods that we cover (such as Gradient Descent) also will be described in terms of a visual representation of the process, and ultimately, one can still use such models without a complete understanding of the internal mechanics. Thus, the recommendation to have a "basic knowledge of linear algebra" is more of a suggestion, than a requirement..

Should I take an online course in Python to help me prepare for the Boot Camp?

Yes! It is important to learn, refresh, or upgrade your Python skills before you arrive for the DSFM Boot Camp. Doing so will help you get much more out of the course. Below we list several options to help you get going:

Option A ~ 7 hours

If you have some previous experience with computer programming (or you are generally quick to pick up on computing ideas), we recommend the Kaggle tutorial on Python:

Option B ~ 34 hours

If you are new to computer programming (or you prefer a slow and comprehensive approach), we recommend the "Python for Beginners" track from JetBrains Academy:

While you are there, you can also track your progress across all Python skills using their unique "knowledge map" tool: https://hyperskill.org/knowledge-map

Option C ~ Many more hours

If you are familiar with Python and want to focus on methods and tools to manipulate data, we recommend the Kaggle course on Pandas:

The Pandas track above provides the most comprehensive preparation for DSFM, and is appropriate for those of you who want to return to work after DSFM and put their new skills immediately into practice.

Can I take both the Fast Track and the Boot Camp?

There are two versions of DSFM: The Technical Boot Camp and the No-Code Fast Track.

  • The Fast Track skips the coding aspects of implementing Data Science models., but it does cover the technical and conceptual basis of how each model works, how it can be evaluated, and how it can be improved.

  • The Boot Camp focuses more on what is actually required to develop and implement Data Science solutions through programming code. It goes through many programming examples and exercises (about half of the overall time in the Boot Camp). Nevertheless, the intention of the Boot Camp is not to turn participants into professional programmers; instead, it is to educate "technically capable" people to work in conjunction with data scientists or outside consultants.

Do you arrange transportation and lodging?

No - we ask you to arrange your own transportation and lodging. But when you enroll, we will send you instructions with more details about travel and several options for lodging nearby.

Will I be able to implement what I have learned at the end of the course?

For the Boot Camp, the course dedicates over 22 hours to programming demonstrations, exercises, and short programming projects. While most students approach the programming projects from a mindset of looking at the solutions and then backward engineering what it does, motivated students can also tackle each project with the intention of trying to program it in full - by yourself. If you do that on all the projects - then you will be ready to start implementing real models and solutions yourself at the end of the course. But that of course is up to you, your level of motivation, and so on. Almost every student leaves DSFM saying that the course is harder - and is more hands on - than they expected. In that sense, DSFM should put you on a path toward implementing real solutions.

I'm new to Data Science, will I be able to keep up?

DSFM provides an EPFL-level experience, but we recognize that you will be returning to the course from industry after many years out of school. We work hard to not to drop anyone during the course, and we have TAs on hand for 1-on-1 help.


Sign up for our newsletter to receive updates about the program.

Contact us if you have questions.